Entrer un problème...
Algèbre linéaire Exemples
[11-201-312-30-3-213-40-4513-310-314-50-814]
Étape 1
Nullity is the dimension of the null space, which is the same as the number of free variables in the system after row reducing. The free variables are the columns without pivot positions.
Étape 2
Étape 2.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
Étape 2.1.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
[11-201-31-12-1-3+20-0-3-1-2+313-40-4513-310-314-50-814]
Étape 2.1.2
Simplifiez R2.
[11-201-301-10-4113-40-4513-310-314-50-814]
[11-201-301-10-4113-40-4513-310-314-50-814]
Étape 2.2
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
Étape 2.2.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
[11-201-301-10-411-13-1-4+20-0-4-15+313-310-314-50-814]
Étape 2.2.2
Simplifiez R3.
[11-201-301-10-4102-20-5813-310-314-50-814]
[11-201-301-10-4102-20-5813-310-314-50-814]
Étape 2.3
Perform the row operation R4=R4-R1 to make the entry at 4,1 a 0.
Étape 2.3.1
Perform the row operation R4=R4-R1 to make the entry at 4,1 a 0.
[11-201-301-10-4102-20-581-13-1-3+21-00-1-3+314-50-814]
Étape 2.3.2
Simplifiez R4.
[11-201-301-10-4102-20-5802-11-1014-50-814]
[11-201-301-10-4102-20-5802-11-1014-50-814]
Étape 2.4
Perform the row operation R5=R5-R1 to make the entry at 5,1 a 0.
Étape 2.4.1
Perform the row operation R5=R5-R1 to make the entry at 5,1 a 0.
[11-201-301-10-4102-20-5802-11-101-14-1-5+20-0-8-114+3]
Étape 2.4.2
Simplifiez R5.
[11-201-301-10-4102-20-5802-11-1003-30-917]
[11-201-301-10-4102-20-5802-11-1003-30-917]
Étape 2.5
Perform the row operation R3=R3-2R2 to make the entry at 3,2 a 0.
Étape 2.5.1
Perform the row operation R3=R3-2R2 to make the entry at 3,2 a 0.
[11-201-301-10-410-2⋅02-2⋅1-2-2⋅-10-2⋅0-5-2⋅-48-2⋅102-11-1003-30-917]
Étape 2.5.2
Simplifiez R3.
[11-201-301-10-4100003602-11-1003-30-917]
[11-201-301-10-4100003602-11-1003-30-917]
Étape 2.6
Perform the row operation R4=R4-2R2 to make the entry at 4,2 a 0.
Étape 2.6.1
Perform the row operation R4=R4-2R2 to make the entry at 4,2 a 0.
[11-201-301-10-410000360-2⋅02-2⋅1-1-2⋅-11-2⋅0-1-2⋅-40-2⋅103-30-917]
Étape 2.6.2
Simplifiez R4.
[11-201-301-10-4100003600117-203-30-917]
[11-201-301-10-4100003600117-203-30-917]
Étape 2.7
Perform the row operation R5=R5-3R2 to make the entry at 5,2 a 0.
Étape 2.7.1
Perform the row operation R5=R5-3R2 to make the entry at 5,2 a 0.
[11-201-301-10-4100003600117-20-3⋅03-3⋅1-3-3⋅-10-3⋅0-9-3⋅-417-3⋅1]
Étape 2.7.2
Simplifiez R5.
[11-201-301-10-4100003600117-20000314]
[11-201-301-10-4100003600117-20000314]
Étape 2.8
Swap R4 with R3 to put a nonzero entry at 3,3.
[11-201-301-10-4100117-20000360000314]
Étape 2.9
Multiply each element of R4 by 13 to make the entry at 4,5 a 1.
Étape 2.9.1
Multiply each element of R4 by 13 to make the entry at 4,5 a 1.
[11-201-301-10-4100117-20303030333630000314]
Étape 2.9.2
Simplifiez R4.
[11-201-301-10-4100117-20000120000314]
[11-201-301-10-4100117-20000120000314]
Étape 2.10
Perform the row operation R5=R5-3R4 to make the entry at 5,5 a 0.
Étape 2.10.1
Perform the row operation R5=R5-3R4 to make the entry at 5,5 a 0.
[11-201-301-10-4100117-20000120-3⋅00-3⋅00-3⋅00-3⋅03-3⋅114-3⋅2]
Étape 2.10.2
Simplifiez R5.
[11-201-301-10-4100117-2000012000008]
[11-201-301-10-4100117-2000012000008]
Étape 2.11
Multiply each element of R5 by 18 to make the entry at 5,6 a 1.
Étape 2.11.1
Multiply each element of R5 by 18 to make the entry at 5,6 a 1.
[11-201-301-10-4100117-2000012080808080888]
Étape 2.11.2
Simplifiez R5.
[11-201-301-10-4100117-2000012000001]
[11-201-301-10-4100117-2000012000001]
Étape 2.12
Perform the row operation R4=R4-2R5 to make the entry at 4,6 a 0.
Étape 2.12.1
Perform the row operation R4=R4-2R5 to make the entry at 4,6 a 0.
[11-201-301-10-4100117-20-2⋅00-2⋅00-2⋅00-2⋅01-2⋅02-2⋅1000001]
Étape 2.12.2
Simplifiez R4.
[11-201-301-10-4100117-2000010000001]
[11-201-301-10-4100117-2000010000001]
Étape 2.13
Perform the row operation R3=R3+2R5 to make the entry at 3,6 a 0.
Étape 2.13.1
Perform the row operation R3=R3+2R5 to make the entry at 3,6 a 0.
[11-201-301-10-410+2⋅00+2⋅01+2⋅01+2⋅07+2⋅0-2+2⋅1000010000001]
Étape 2.13.2
Simplifiez R3.
[11-201-301-10-41001170000010000001]
[11-201-301-10-41001170000010000001]
Étape 2.14
Perform the row operation R2=R2-R5 to make the entry at 2,6 a 0.
Étape 2.14.1
Perform the row operation R2=R2-R5 to make the entry at 2,6 a 0.
[11-201-30-01-0-1-00-0-4-01-1001170000010000001]
Étape 2.14.2
Simplifiez R2.
[11-201-301-10-40001170000010000001]
[11-201-301-10-40001170000010000001]
Étape 2.15
Perform the row operation R1=R1+3R5 to make the entry at 1,6 a 0.
Étape 2.15.1
Perform the row operation R1=R1+3R5 to make the entry at 1,6 a 0.
[1+3⋅01+3⋅0-2+3⋅00+3⋅01+3⋅0-3+3⋅101-10-40001170000010000001]
Étape 2.15.2
Simplifiez R1.
[11-201001-10-40001170000010000001]
[11-201001-10-40001170000010000001]
Étape 2.16
Perform the row operation R3=R3-7R4 to make the entry at 3,5 a 0.
Étape 2.16.1
Perform the row operation R3=R3-7R4 to make the entry at 3,5 a 0.
[11-201001-10-400-7⋅00-7⋅01-7⋅01-7⋅07-7⋅10-7⋅0000010000001]
Étape 2.16.2
Simplifiez R3.
[11-201001-10-40001100000010000001]
[11-201001-10-40001100000010000001]
Étape 2.17
Perform the row operation R2=R2+4R4 to make the entry at 2,5 a 0.
Étape 2.17.1
Perform the row operation R2=R2+4R4 to make the entry at 2,5 a 0.
[11-20100+4⋅01+4⋅0-1+4⋅00+4⋅0-4+4⋅10+4⋅0001100000010000001]
Étape 2.17.2
Simplifiez R2.
[11-201001-1000001100000010000001]
[11-201001-1000001100000010000001]
Étape 2.18
Perform the row operation R1=R1-R4 to make the entry at 1,5 a 0.
Étape 2.18.1
Perform the row operation R1=R1-R4 to make the entry at 1,5 a 0.
[1-01-0-2-00-01-10-001-1000001100000010000001]
Étape 2.18.2
Simplifiez R1.
[11-200001-1000001100000010000001]
[11-200001-1000001100000010000001]
Étape 2.19
Perform the row operation R2=R2+R3 to make the entry at 2,3 a 0.
Étape 2.19.1
Perform the row operation R2=R2+R3 to make the entry at 2,3 a 0.
[11-20000+01+0-1+1⋅10+1⋅10+00+0001100000010000001]
Étape 2.19.2
Simplifiez R2.
[11-2000010100001100000010000001]
[11-2000010100001100000010000001]
Étape 2.20
Perform the row operation R1=R1+2R3 to make the entry at 1,3 a 0.
Étape 2.20.1
Perform the row operation R1=R1+2R3 to make the entry at 1,3 a 0.
[1+2⋅01+2⋅0-2+2⋅10+2⋅10+2⋅00+2⋅0010100001100000010000001]
Étape 2.20.2
Simplifiez R1.
[110200010100001100000010000001]
[110200010100001100000010000001]
Étape 2.21
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
Étape 2.21.1
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
[1-01-10-02-10-00-0010100001100000010000001]
Étape 2.21.2
Simplifiez R1.
[100100010100001100000010000001]
[100100010100001100000010000001]
[100100010100001100000010000001]
Étape 3
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11,a22,a33,a45, and a56
Pivot Columns: 1,2,3,5, and 6
Étape 4
The nullity is the number of columns without a pivot position in the row reduced matrix.
1